1) The medians of a triangle intersect at a point. The distance from the vertex to the point is exactly two-thirds of the distance from the vertex to the midpoint of the opposite side. Find the exact distance of that point from the vertex A(3, 4) of a triangle, given that the other two vertices are at (0, 0) and (8, 0).

A) $\frac{\sqrt{17}}{3}$ C) $\frac{2\sqrt{17}}{3}$ E) None of the Above.
B) $\frac{8}{3}$ D) 2

2) A Ferris wheel has a diameter of 200 feet and the bottom of the Ferris wheel is 5 feet above the ground. Find the equation of the wheel if the origin is placed on the ground directly below the center of the wheel.

A) $x^2 + (y - 105)^2 = 10,000$ C) $x^2 + (y - 205)^2 = 10,000$ E) None of the Above.
B) $x^2 + (y - 105)^2 = 11,025$ D) $x^2 + y^2 = 11,025$

3) A rectangle that is x feet wide is inscribed in a circle of radius 12 feet. Express the area of the rectangle as a function of x.

A) $A(x) = x\sqrt{576 - x^2}$ C) $A(x) = x\sqrt{144 - x^2}$ E) None of the Above.
B) $A(x) = x^2\sqrt{144 - x^2}$ D) $A(x) = x(576 - x^2)$

4) Let $P = (x, y)$ be a point on the graph of $y = \sqrt{x}$. Express the distance d from P to the point (1, 0) as a function of x.

A) $d(x) = x^2 - x + 1$ C) $d(x) = x^2 + 2x + 2$ E) None of the Above.
B) $d(x) = \sqrt{x^2 - x + 1}$ D) $d(x) = \sqrt{x^2 + 2x + 2}$

5) Given $f(x) = \frac{1}{x}$ and $(f')g(x) = \frac{x - 66}{x^2 + 5x}$, find the function g.

A) $g(x) = \frac{x^2 + 55x}{x - 6}$ C) $g(x) = \frac{x + 55}{x - 6}$ E) None of the Above.
B) $g(x) = \frac{x^3 + 55x^2}{x - 6}$ D) $g(x) = \frac{x + 66}{x - 55}$

6) Alan is building a garden shaped like a rectangle with a semicircle attached to one side. If he has 20 feet of fencing to go around it, what width will give him the maximum area in the garden?

A) width $= \frac{20}{\pi - 4}$ C) width $= \frac{80}{\pi + 4}$ E) None of the Above.
B) width $= \frac{40}{\pi + 4}$ D) width $= \frac{40}{\pi - 8}$
7) Use the graph below to find \((f \circ g \circ h)(-3)\) where \(f\) is linear, \(g\) is quadratic, and \(h\) is cubic.

A) 1
B) 0
C) -2
D) -3
E) None of the Above.

8) If \(7^x = 3\), what does \(7^{-3x}\) equal?

A) \(\frac{1}{27}\)
B) -27
C) 343
D) \(\frac{1}{343}\)
E) None of the Above.

9) Let \(\log_b(3) = 0.5\) and \(\log_b(2) = 0.1\), evaluate \(\log_b(4.5)\).

A) .15
B) .9
C) .55
D) 2.5
E) None of the Above.

10) Given \(f(x) = 3^x\) and \(g(x) = 4^{1-x}\), find the point of intersection of the graphs of \(f\) and \(g\).

A) \(\frac{\ln 4}{\ln 3 + \ln 4}\)
B) \(\frac{\ln 4}{\ln 3 + \ln 4}\)
C) \(\frac{\ln 24}{\ln 8}\)
D) \(\ln 3 - \ln 4\)
E) None of the Above.

11) For what numbers \(x, 0 \leq x \leq 2\pi\), does the graph of \(y = \tan\left(\frac{\pi}{4}x - 2\right)\) have vertical asymptotes?

A) \(2 + \frac{8}{\pi}, 6 + \frac{8}{\pi}\)
B) \(\frac{8}{\pi}, 4 + \frac{8}{\pi}\)
C) \(\frac{8}{\pi} - 2, \frac{8}{\pi} - 6\)
D) \(\frac{2}{\pi}, \frac{3}{2\pi}\)
E) None of the Above.

12) Solve the equation on the interval \(0 \leq \theta < 2\pi\): \(\cot \theta = 2 \cos \theta\).

A) \(\left\{\frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{2}\right\}\)
B) \(\left\{0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi\right\}\)
C) \(\left\{\frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{3\pi}{2}\right\}\)
D) \(\left\{0, \frac{\pi}{6}, \frac{5\pi}{6}, \pi\right\}\)
E) None of the Above.
13) Find a rectangular equation for the plane curve defined by the parametric equations: \(x = 5 \tan t, \ y = 4 \sec t; \ 0 \leq t \leq 2\pi \).

 A) \(y = 4\sqrt{1 + \frac{x^2}{25}}; \ \text{for} \ x \in -\infty < x < \infty \)
 C) \(\frac{y^2}{16} - \frac{x^2}{25} = 1; \ \text{for} \ x \in -\infty < x < \infty \)

 B) \(y = x^2 - 9; \ \text{for} \ x \in -3 \leq x \leq 3 \)
 D) \(\frac{y^2}{16} + \frac{x^2}{25} = 1; \ \text{for} \ x \in -\infty < x < \infty \)

 E) None of the Above

14) Find all \(\theta \) on \((0, \frac{\pi}{2}) \) such that the matrix is invertible.

\[
\begin{bmatrix}
\sec \theta & \pi \cot \theta \\
\tan \theta & 0 & \csc \theta \\
-\sin \theta & \pi \tan \theta
\end{bmatrix}
\]

 A) 0
 C) All \(\theta \) on \((0, \frac{\pi}{2}) \)
 E) None of the Above

 B) All \(\theta \) on \((0, \frac{\pi}{4}) \)
 D) \(\frac{\pi}{4} \)

Suppose the point (2, 4) is on the graph of \(y = f(x) \). Find a point on the graph of the given function.

15) \(y = -f(x + 5) - 3 \)

 A) (-3, -7)
 C) (7, -7)
 E) None of the Above

 B) (7, -10)
 D) (-3, 0)

Solve the problem.

16) Use the tables to find \((fg)(-7) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>-7</th>
<th>2</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>9</td>
<td>7</td>
<td>-7</td>
</tr>
</tbody>
</table>

 A) -63
 C) 49
 E) None of the Above

 B) 28
 D) 45

17) Find the center-radius form of the equation of the circle having a diameter with endpoints \((-5, 1)\) and \((3, 7)\).

 A) \((x - 1)^2 + (y + 4)^2 = 5 \)
 C) \((x + 1)^2 + (y - 4)^2 = 25 \)
 E) None of the Above

 B) \((x + 3)^2 + (y - 7)^2 = 10 \)
 D) \((x - 3)^2 + (y + 7)^2 = 100 \)
Given the equation or other information for a parabola, find the matching description or graph.

18) \(f(x) = ax^2 + bx + c, \quad a > 0; \quad b^2 - 4ac < 0 \)

- **A)** Graph A
- **B)** Graph B
- **C)** Graph C
- **D)** Graph D
- **E)** None of the Above

Find a polynomial of lowest degree with only real coefficients and having the given zeros.

19) \(\sqrt{13} \) and 3 (multiplicity 2)

- **A)** \(f(x) = x^4 - 6x^3 - 4x^2 + 78x - 117 \)
- **B)** \(f(x) = x^3 + 3x^2 - 13x - 39 \)
- **C)** \(f(x) = x^3 - 3x^2 - 13x + 39 \)
- **D)** \(f(x) = x^4 + 6x^3 + 4x^2 - 78x + 117 \)
- **E)** None of the Above

Give the domain and range for the rational function. Use interval notation.

20) \(f(x) = \frac{1}{(x - 8)^2 + 9} \)

- **A)** Domain: \((-\infty, 8) \cup (8, \infty) \); Range: \((9, \infty) \)
- **B)** Domain: \((-\infty, -8) \cup (-8, \infty) \); Range: \((-\infty, 9) \)
- **C)** Domain: \((-\infty, 8) \cup (8, \infty) \); Range: \((-\infty, 0) \)
- **D)** Domain: \((-\infty, 8) \cup (8, \infty) \); Range: \((-\infty, 9) \)
- **E)** None of the Above
Find an equation for the rational function graph.

21)

\[
A) f(x) = \frac{x - 6}{x(x - 7)} \\
B) f(x) = \frac{x - 7}{x(x - 6)} \\
C) f(x) = \frac{x(x - 6)}{x - 7} \\
D) f(x) = \frac{x(x - 7)}{x - 6} \\
E) None of the Above
\]

Solve the equation.

22) \(\log_3 x = \sqrt{\log_3 x} \)

A) \{0, 3\} \\
B) \{3\} \\
C) \{1, 3\} \\
D) \{0, 1\} \\
E) None of the Above

Determine the equation of the graph.

23) The function graphed is of the form \(y = a \tan bx \) or \(y = a \cot bx \), where \(b > 0 \). Determine the equation of the graph.

A) \(y = \tan 4x \) \\
B) \(y = \cot 4x \) \\
C) \(y = 4 \cot x \) \\
D) \(y = 4 \tan x \) \\
E) None of the Above

Solve the problem.

24) The position of a weight attached to a spring is \(s(t) = -7 \cos 20\pi t \) inches after \(t \) seconds. What is the maximum height that the weight reaches above the equilibrium position and when does it first reach the maximum height?

A) The maximum height of 7 inches is first reached after 10 seconds. \\
B) The maximum height of 14 inches is first reached after 5 seconds. \\
C) The maximum height of 14 inches is first reached after 10 seconds. \\
D) The maximum height of 7 inches is first reached after 0.05 seconds. \\
E) None of the Above
Write the following as an algebraic expression in u, u > 0.

25) \(\sin \left(\arccos \frac{\sqrt{u^2 + 4}}{u} \right) \)

A) \(\frac{\sqrt{u^2 + 2}}{u^2 + 2} \)
B) \(u \sqrt{2} \)
C) \(\frac{u \sqrt{u^2 + 2}}{u^2 + 2} \)
D) \(\frac{2 \sqrt{u^2 + 4}}{u^2 + 4} \)
E) None of the Above

Solve the inequality. Write the solution set in interval notation.

26) \(\left| \frac{4x + 1}{x - 5} \right| \geq 0 \)

A) \(\left[-\frac{1}{4}, 5 \right) \)
B) \((-\infty, 5) \cup (5, \infty) \)
C) \((-5, 5) \)
D) \(\left[-\frac{1}{4}, 5 \right) \)
E) None of the Above

Evaluate the expression.

27) \(\cos \left(\arcsin \frac{3}{5} + \arccos \frac{\sqrt{3}}{2} \right) \)

A) \(\frac{2 \sqrt{3} + 2}{5} \)
B) \(\frac{4 \sqrt{3} + 3}{10} \)
C) \(\frac{-25 \sqrt{3} - 48}{100} \)
D) \(\frac{4 \sqrt{3} - 3}{10} \)
E) None of the Above

Solve the equation for solutions in the interval \([0, 2\pi)\).

28) \(\sec \frac{x}{2} = \cos \frac{x}{2} \)

A) \(\{0\} \)
B) \(\left\{ \frac{\pi}{4}, \frac{5\pi}{4} \right\} \)
C) \(\left\{ \frac{\pi}{12}, \frac{5\pi}{6}, \frac{2\pi}{3}, \frac{7\pi}{12}, \frac{7\pi}{6}, \frac{13\pi}{12}, \frac{5\pi}{3} \right\} \)
D) \(\left\{ 0, \frac{\pi}{4}, \pi, \frac{5\pi}{3} \right\} \)
E) None of the Above

Solve the equation for x.

29) \[
\begin{bmatrix}
0 & 0 & x \\
-4 & x & -4 \\
1 & 1 & x
\end{bmatrix}
= 4
\]

A) \(\{2\} \)
B) \(\{-2\} \)
C) \(\{4\} \)
D) \(\emptyset \)
E) None of the Above

30) Use the coding matrix \(A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 2 \end{bmatrix} \) and its inverse \(A^{-1} = \begin{bmatrix} -1 & -1 & 1 \\ 5 & 2 & -3 \end{bmatrix} \) to decode the cryptogram \[
\begin{bmatrix}
37 & 16 & 35 \\
38 & 20 & 4 \\
82 & 40 & 60
\end{bmatrix}
\]

Number of letters of the alphabet 1 through 26 in their usual order.

A) GOOD_LUCK
B) HELP_THEM
C) LOOK_DOWN
D) STAY_CALM
E) None of the Above