The Efficacy of Two Thermal Modalities on Hip Flexion

Lauren N. Griffin, Shawn D. Felton, Kelley D. Henderson, Mitchell L. Cordova, FACSM

Abstract

Proper extensibility of the human body is musculoskeletal is important for the reduction of injuries. The hamstring muscle group is especially important when discussing flexibility since even a slight decrease can be detrimental to an athlete’s performance. Increasing the core temperature above four degrees Celsius will increase collagen tissue extensibility and decrease tissue viscosity.1-3 These two deep heating modalities can provide immediate increases in range of motion.4-5 The use of diathermy should be more effective than ultrasound since the hamstrings are large and it can increase temperature in muscles.6-7 Flexibility is important in prevention of sports injuries, as lack of it increases the statistical higher risk for musculoskeletal lesions. The most easily increased tightness of the hamstring muscle group have a statistically higher risk for musculoskeletal lesions. The most easily increased tightness of the hamstring muscle group have a statistically higher risk for musculoskeletal lesions. The most easily increased tightness of the hamstring muscle group have a statistically higher risk for musculoskeletal lesions. The most easily increased tightness of the hamstring muscle group have a statistically higher risk for musculoskeletal lesions. The most easily increased tightness of the hamstring muscle group have a statistically higher risk for musculoskeletal lesions.

Methods

Methods Cont.

The following completion of each individual treatment that ended simultaneously, the participants’ HROM was evaluated immediately after treatment and at the following intervals: post-treatment 2 minutes, post-treatment 5 minutes and post treatment 10 minutes with the same ATC conducting the initial HROM measurements utilizing clinically established goniometry measurement technique.

Statistical Analysis:

• A 2 x 5 repeated measures ANOVA was used to assess the effects of group and time on HROM.
• Simple main effects testing and pairwise comparisons were used to locate specific group differences.
• The level of significance was established at P < 0.05.

Results

Means and SD along with 95% Confidence Intervals for group by time presented in Table.

Mauchly’s sphericity was significant at the p < 0.05 level therefore Huynh-Felt correction was utilized. F(3.553, 149.232) = 9.100, p < 0.000.

• No significant interaction between group and time on HROM was found.
• A significant effect of time was found (F(3, 1.649) = 5.74, P = 0.661).
• A significant effect of time was found (F(3, 1.649) = 5.74, P = 0.661).
• A significant effect of time was found (F(3, 1.649) = 5.74, P = 0.661).
• A significant effect of time was found (F(3, 1.649) = 5.74, P = 0.661).

Discussion

Flexibility is important in prevention of sports injuries, as lack of it is a predisposing factor for sports injuries. Athletes with increased tightness of the hamstring muscle group have a statistically higher risk for musculoskeletal lesions. The most easily increased tightness of the hamstring muscle group have a statistically higher risk for musculoskeletal lesions. The most easily increased tightness of the hamstring muscle group have a statistically higher risk for musculoskeletal lesions. The most easily increased tightness of the hamstring muscle group have a statistically higher risk for musculoskeletal lesions. The most easily increased tightness of the hamstring muscle group have a statistically higher risk for musculoskeletal lesions. The most easily increased tightness of the hamstring muscle group have a statistically higher risk for musculoskeletal lesions. The most easily increased tightness of the hamstring muscle group have a statistically higher risk for musculoskeletal lesions. The most easily increased tightness of the hamstring muscle group have a statistically higher risk for musculoskeletal lesions. The most easily increased tightness of the hamstring muscle group have a statistically higher risk for musculoskeletal lesions. The most easily increased tightness of the hamstring muscle group have a statistically higher risk for musculoskeletal lesions. The most easily increased tightness of the hamstring muscle group have a statistically higher risk for musculoskeletal lesions. The most easily increased tightness of the hamstring muscle group have a statistically higher risk for musculoskeletal lesions. The most easily increased tightness of the hamstring muscle group have a statistically higher risk for musculoskeletal lesions. The most easily increased tightness of the hamstring muscle group have a statistically higher risk for musculoskeletal lesions. The most easily increased tightness of the hamstring muscle group have a statistically higher risk for musculoskeletal lesions.

References