Aquatic Therapy for a Patient Post-Stroke: A Case Report

Katey Duffy, SPT
Co-Authors: Kathleen Swanick, DPT, MS, OCS & Mollie Venglar, DSC, MSPT, NCS

ABSTRACT

Stroke affects approximately 795,000 Americans each year and costs over $70 billion in related medical expenses and disability (American Stroke Association, 2012). The effects of stroke are devastating and consist of neurologic, musculoskeletal, and cognitive manifestations. A secondary impairment that is the most significant complication in this population is falls (Schmid & Rittman, 2009). Typical outpatient physical therapy for people post-stroke includes services to improve mobility, activities of daily living, and community reintegration (Duncan et al., 2005). Patients post-stroke may present with barriers to conventional dry land therapy, preventing them from acquiring their full rehab potential (Haring, 2002; Schmid & Rittman, 2007). The addition of an aquatic therapy program may be a solution to these barriers and allow for better functional outcomes.

INTRODUCTION

The patient participated in 60-minute aquatic therapy sessions in a 93-degree pool twice a week for eight weeks. These sessions included interventions for tone reduction, gait, balance, and strengthening.

Treatment Diagnosis
- Deep water exercises and lumbar traction
- Hypertonicity
- Broca’s Aphasia
- Impaired balance
- History of ischemic stroke affecting left lower extremity
- 84 year
- Lower extremity

History of ischemic stroke affecting left lower extremity, 84 year old male with right hemiplegia, resulting in impaired gait, balance, and overall functional mobility. The aquatic therapy sessions were twice a week for eight weeks and included tone reduction, gait training, balance activities, and strengthening exercises. After eight weeks, the patient demonstrated improved strength, reduced muscle tone, and decreased risk of falls as evidenced by improved scores on the Berg Balance Scale and Timed Up and Go (TUG) Test. This case report suggests that aquatic therapy may be beneficial for patients with stroke who show minimal progress with land therapy or are unable to tolerate land activities.

Patient History & Examination

- Patient History
 - Demographics
 - 84-year-old Caucasian male
 - Medical Diagnosis
 - History of ischemic stroke affecting left middle cerebral artery (5 years ago), resulting in right hemiplegia
 - Broca’s Aphasia
 - Treatment Diagnosis
 - Impaired gait
 - Impaired balance
 - Decreased strength and range of motion
 - Hypertonicity
 - Past Medical History
 - Hypertension, coronary artery disease, atrial fibrillation, Type II diabetes, sleep apnea, hernia repair, intrathecal Baclofen pump
 - Current Level of Function
 - Requires assistance with bathing, grooming, dressing, cooking, and shopping
 - Uses wide base quad cane for household ambulation and wheelchair for community distances
 - Examination: See “Outcomes” section for pre-treatment measurements

Key References

INTervention

- 10-minute warm-up/gait training consisting of forward walking and side-stepping
- Hamstring and gastrocnemius stretches
- PNF D2 extension with rhythmic rotation to right upper extremity
- Lower extremity strengthening
- Paddle series
- Deep water exercises and lumbar traction
- Progression to Aquatic Maintenance Program

Outcomes

Outcome measures were taken at the initial evaluation, after 30 days of treatment, and after 60 days of treatment. Comparisons of the pre-treatment and post-treatment measurements were made to determine if there were any changes.

Manual Muscle Test Grades Pre-Treatment

<table>
<thead>
<tr>
<th>Upper Extremity</th>
<th>Lower Extremity</th>
<th>Lumbar Spine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoulder Flexion</td>
<td>2+</td>
<td>2+</td>
</tr>
<tr>
<td>Shoulder Abduction</td>
<td>2+</td>
<td>2+</td>
</tr>
<tr>
<td>Elbow Flexion</td>
<td>2+</td>
<td>2+</td>
</tr>
<tr>
<td>Elbow Extension</td>
<td>2+</td>
<td>2+</td>
</tr>
<tr>
<td>Wrist Flexion</td>
<td>2+</td>
<td>2+</td>
</tr>
<tr>
<td>Wrist Extension</td>
<td>2+</td>
<td>2+</td>
</tr>
</tbody>
</table>

Manual Muscle Test Grades Post-Treatment

<table>
<thead>
<tr>
<th>Upper Extremity</th>
<th>Lower Extremity</th>
<th>Lumbar Spine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoulder Flexion</td>
<td>2+</td>
<td>2+</td>
</tr>
<tr>
<td>Shoulder Abduction</td>
<td>2+</td>
<td>2+</td>
</tr>
<tr>
<td>Elbow Flexion</td>
<td>2+</td>
<td>2+</td>
</tr>
<tr>
<td>Elbow Extension</td>
<td>2+</td>
<td>2+</td>
</tr>
<tr>
<td>Wrist Flexion</td>
<td>2+</td>
<td>2+</td>
</tr>
<tr>
<td>Wrist Extension</td>
<td>2+</td>
<td>2+</td>
</tr>
</tbody>
</table>

Pre-Treatment and Post-Treatment Comparison of Timed Up and Go (TUG), Berg Balance Scale (BBS), and Modified Ashworth Scale

<table>
<thead>
<tr>
<th>Pre-Treatment</th>
<th>Post-Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUG</td>
<td>44 seconds</td>
</tr>
<tr>
<td>BBS</td>
<td>19/56</td>
</tr>
<tr>
<td>Modified Ashworth Score</td>
<td>Upper Extremity: 3</td>
</tr>
</tbody>
</table>

Discussion

The results of these outcome measures suggest that aquatic therapy may be beneficial for patients with a history of stroke. Although the patient continues to be a high fall risk, the patient made significant functional improvements that should not be overlooked. A randomized controlled trial needs to be conducted to determine if these results may be generalized. Aquatic therapy should be considered a viable option if the patient is unable to tolerate land activities or is not progressing on land.